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Separable Expansion of Potential in Multidimensional Space. 
Three-Body Problem 

1. INTR~DIJCTI~N 

Tn the present paper the problem of the three-particle bound state is solved by 
the method of separable expansion of the total potential V = V,, + V,, + V,, 
in the six-dimensional space. In a concrete calculation for a sum of two-body 
potentials of the Gaussian type, a rapid convergence of the proposed procedure 
is established. The wavefunction of the system considered is presented as a series in 
matrix elements of the potential V, which are explicitly calculated in the given case. 

In the last few years considerable progress has been achieved in the description 
of a system consisting of three particles interacting via a short-range potential. 
In this case, as is well known, equations with Fredholm kernels have been derived 
[l-4] and rather rapidly convergent regular procedures have been developed for 
solving three-particle equations [5-l 31. 

However, calculations of the properties of such a system with realistic interaction 
potentials as the Reid potential are still rather complicated and for positive 
energies of three-body systems, these only now being developed [14, 151. This 
situation is due to the following. First, realistic potentials, being very complicated, 
generate many components in the wavefunction of a three-particle system. Second, 
the solution of the Faddeev equations even with central local potentials is still 
more complicated than that of a two particle system with the same interaction. 

Thus, if the first difficulty cannot, generally, be avoided one may try to simplify 
the solution of three-particle equations with central potentials. 

In this note we propose a version of such an attempt based on the separable 
expansion of the potential V = V,, + V,, + V,, in the six-dimensional space. 
The general theory of the method proposed is given in the following section. 
In Section 3 we give numerical calculations for the case of a sum of two-body 
potentials of the Gaussian type. Finally some conclusions are given in Section 4. 

2. SEPARABLE EXPANSION 

Let us take the Lippmann-Schwinger equation describing a bound state of 
three identical spinless particles: 

I y> = ‘X-J-9 VI y>. (1) 
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In the momentum representation it has the form 

NIP) = (w I #) = G&PE) j-4’ dp’ (w I v I q’p’) t&W)> (2) 

where q is the relative momentum of two particles, p is the momentum of third 
particle relative to the center of mass of two other particles, E is the total energy, 
G,,(q, p, E) = m/(mE - q2 - fpp3 is the Green’s function of noninteracting 
particles, and m is the mass of the particle. 

By introducing the functions for a given total angular momentum ??&M($) 

(here 6, $ are the unit vectors directed along the vectors q and p, resp., (Ihp 1 LM) 
is the Clebsch-Gordan coefficient) into (2) we get the equations for partial waves 

Y&(qp) = G&q@) j-qf2 dq’p’2 dp’ c J&,,,(qp, q’p’) yb,,(qkf). 
E’A’ 

(4) 

The kernel K has the form 

As we are solving the bound-state problem of three particles, the solutions of 
equations (2) and (4) are square-integrable functions. This, in principle, allows us 
to approximate the square-nonintegrable function <qp ( Y 1 q’p’} by a more regular 
function. Here we use the fact that action of a delta function on a square-integrable 
function may be replaced by the action of a convergent sequence of regular peaked 
functions [16]. It is clear that the scattering problem should be handled with more 
carefully. 

Hence, instead of the exact potential V = V,, + V23 + V,, we introduce the 
approximate one P 

<qp I P’ I q’p’) = igl (qp I v I xi> d;’ (xi I v I q’p’> (6) 

where dij = (xi/ V 1 xj) and the functions xi are defined in the six-dimensional 
space, i.e., expression (6) realizes an approximate separation of the potential. 
As a result, the problem becomes algebraic. For the application of expansion 
(6) only the linear independence of functions xi is required. The functions xi 
can, clearly, be introduced in an (n < 6)-dimensional space. For example, if we 
introduce them in five-dimensional space, Eq. (4) reduces to a set of one-dimen- 
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sional integral equations. Let us note that expansion (6) is direct multidimen- 
sional analog of the separable expansions of a two-body potential which have 
been applied extensively to various problems of nuclear physics. 

Inserting (6) into (5) we get the approximate kernel 

where 

(7) 

Using the approximate kernel instead of the exact one in Eq. (4) we get the expan- 
sion in projected matrix elements of the potential for the wavefunction 

Yt.,(qp) = G,(qpE) 1 ‘R;$qp) CiL(E). (9) 

The coefficients CiL(E) satisfy the system of algebraic equations 

CiL(E) = 1 AfiCjL(E). (10) 
j 

Here the matrix Ai is defined as 

A& = 2 di;K’ ‘“‘Z;(E), 
klA 

where 

(11) 

ijZh(E) = 
s m q2 dq p2 dp iRfA*(qp> G,(qpE) jR,L,(qp)- 

0 
(12) 

The energy of the system is obtained from the condition: 

det(1 - AL(E)) = 0. (13) 

For the sake of simplicity in the next section we consider states with L = 0, and 
besides, restrict ourselves to values I = h = 0, as we have a short-range potential. 
In this case expression (8) takes the form 

(14) 

Introducing the Jacobi coordinates g, n for matrix elements (qp 1 V 1 xi) we have 
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Here (6~ 1 xi) are xi functions in the coordinate representation. Expanding the 
exponentials in (15) in spherical functions 

and inserting (15) into (14) we get 

where x = cos 8, B is the angle between vectors C, n. 

3. NUMERICAL RESULTS 

To see how the separable expansion works in practice, we now specialize our 
calculation to the two-body potential of the Gaussian type 

V(.$) = VOe-@. (17) 

Parameters V, and fl are taken from article [6]. For this potential there are known 
very exact estimates of lower and upper bounds of the binding energy of the three- 
particle system [6]: 

-ET = 9.7813 f 0.0024. (1% 

The functions xi are chosen also to be of the Gaussian form: 

(&j 1 xc) e xi(+j) = e-&--Bin2 . (19) 

Expressions for matrix elements dij , iRzo(qp) and integrals (12) are given in an 
appendix to this paper. By using the potential (17) and functions (19) integral (16) 
can be calculated explicitly. Coefficients “jZ,$-,(E) are expressed as one-dimensional 
integrals which may be calculated numerically. 

The results of binding energy calculations are given in Table I. The choice of 
the parameters ai and bi was realized by minimizing energy Ei with respect to the 
function xi without changing the previous i - 1 separable functions. From this 
table it is clear that even three terms in the expansion of the potential given by 
expression (6) enable us to find the tritium binding energy with an error not higher 
than 4 %. From the table it is also clear that all the functions xi become to depend, 
in practice, only on the six-dimensional radius p2 = 5” + q2. The wavefunction 
Y&(qp) of the bound state, as seen from equation (A2) of the appendix, depends 
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TABLE I 

i 1 2 3 4 5 6 7 

ai = q/p 0,45 0,40 0,35 1900 0,35 0,45 0,95 

bd = A/B 0,55 0,40 0,30 l,oo 0,35 0,40 0,95 

--E,(MeV) 8,86 8,90 9,46 9,51 9,64 9,68 9,72 

on the six-dimensional radius R2 = q2 + p2 only in the limit ai = & > p, i.e., 
when the approximate potential p reproduces well the exact one at distances 
small compared with the range of the two-body potential. 

4. CONCLUSION 

Let us briefly discuss the possible range of application of the procedure proposed. 
By this we mean the rate of convergence of expansion (6) and the practical possi- 
bility of calculations of integrals of the type (12) and (16). The use of this method 
for a sum of two-body potentials with other shapes does not lead to additional 
complications in the calculation of the ground state of three-body systems. This 
is because the functions xi can be chosen such that the integral (16) can be cal- 
calculated analytically. For instance, for the Yukawa potential the separating 
functions xi will be chosen to be of the form xi = e++Bin. 

However, for excited states we may expect a slower convergence of the expansion 
(6). As the energy increases toward the lowest threshold, the eigenfunction 
approaches a function of the continuous spectrum, which is non-square-integrable. 
For the scattering solution the approximation (6) is not justified. In addition, the 
convergence of expansion (6) can become slower as the number of particles 
increases, since the dimension of the space in which the separable expansion is 
carried out becomes larger. This occurs, for example, in the expansion of the bound 
state wave function in terms of the hypersphereical functions (K-harmonics) [17]. 

APPENDIX 

Here we give the explicit form of matrix elements di, , integrals (12) and matrix 
elements (16), which determine the functional dependence of the bound state 
wavefunction. 

+ 16[4(ai + a&& + bi + 1) + (bi + b,)]-“l”} (A.1) 
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AT1 = 4Ui(l + b,) + bi DT1 = 8[(at + 1) bi1312 

Bi = (1 + b,) Ai EF1=4(ai+ 1) 

1 +Ai 
ci = 4(1 + b*) 

FcT1 = 4bi 

q;(E) = - 16v02T2m {495III(E) + 2[“jI,,(E) + jiI12(E)] + “jIze(E)} 
P4 

(A.3) 

- e”“h-(“‘Ei[-EEi3fl-(~)])I) dp, 

ii$p((p> = ij& sin2 v + & $jA,* sin tp cos q~ + 4 ‘jcl ax2 q 

“‘Bl = Bi + Bg 9 ‘iA,* = Ai f Aj 3 i3Cl = Ci + C’j 

29r 
i3r,2 - 3(3)1/Z - - (A*)1’2 Di (4/3) A32 + (d3;; _ (4/3) ijC,)z 

’ 
ijB2 + (4/3) W2 

213112 (4 i3B2 ijC2 _ Aj2)W - 

ee”f”(“)E~[-Eijf2(p] sin y cos q~ dp, 

"jf2(y) = ijB2 sin2 y + & Aj sin q~ COS cp -/- 4 ‘jc2 COS2 y 

ijB2 = Bi + Ei , ‘3C2 = Ci f Fj 

27r i31z2 = - DzDi 
I 

1 (4/3) W3 + i3B 
3(3)m (413) ijc, - “3B3 (4/3) W3 - “‘B3 (4/3)(“5B3 i3C3)1i - 

- E Jam e- ((a/3) f’C3+r’B~)z 1,[((4/3) UC3 - ij&) z] 2zdJ E 1 

ijB3 = Ei + Ej , ‘*C3 = Fi + Fj 
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